一篇3000字的现代古代数学发展史论文

人类是动物进化的产物,一开始根本没有量的概念。但是,发达的人脑对客观世界的认识已经达到了更加理性和抽象的程度。就这样,在漫长的生活实践中,出于记录和分发生活用品的需要,逐渐产生了数的概念。比如捕获了一只野生动物,用1颗石头表示。如果你抓到三个头,放三块石头。“打结”也是很多很亲近的古代人类都做过的事情。我国古籍《易经》中就有“打结治国”的记载。传说古代波斯国王用绳子打结来计算战争的天数。用锋利的工具在树皮上刻划或兽皮,或用小棍在地上数,也是古人常用的方法。当这些方法用得多了,就逐渐形成了数的概念和计数的符号。

起初,数字的概念始于自然数,如1,2,3,4...无论它们位于何处,但用于计数的符号大小相同。

古罗马的数字相当先进,现在很多老挂钟也经常使用。

其实罗马数字只有七个符号:I(代表1),V(代表5),X(代表10),L(代表50),C(代表100),D(代表500),M(代表65438)。无论这七个符号的位置如何变化,它们所代表的数字都是一样的。它们可以根据下列定律组合起来表示任何数字:

1.重复次数:一个罗马数字符号重复多少次,意味着这个数字的几倍。比如“三”就是“3”的意思;“XXX”的意思是“30”。

2.右加左减:在代表小数字的符号右边附加一个代表大数字的符号,表示大数字加上小数字,如“VI”代表“6”,“DC”代表“600”。在代表大数字的符号左边附有代表小数字的符号,表示大数字减去小数字的数字,如“IV”代表“4”,“XL”代表“40”,“VD”代表“495”。

3.加横线:在罗马数字上加一条横线,表示是那个数字的1000倍。例如,“”表示“15000”,“表示“165000”。

在中国古代,记谱法也非常重要。最古老的记谱法见于甲骨文和钟鼎,但难以书写和辨认,故不为后人所用。到了春秋战国时期,生产迅速发展。为了满足这种需要,我们的祖先创造了一种非常重要的计算方法——计算。计算用的计算芯片是用竹签和骨头做的。按照指定的长度顺序排列,可用于计数和计算。随着计算的普及,计算和准备的安排成了计算的标志。有两种类型的计算和排列,水平和垂直,两者都可以表示相同的数字。

从计算代码中没有“10”可以清楚地看出,计算从一开始就严格遵循十进制。超过9位数的数字将输入一位数。同样的数字,百里有百,万里有万。这种计算方法在当时是非常先进的。因为十进制在6世纪末才真正在世界其他地方使用。但数字计算中没有“零”,遇到“零”就有空位。例如,“6708”可以表示为“┴ ╥".”数字里没有“零”,所以很容易出错。所以后来有人把铜钱放在空白处以免出错,这可能与“零”的出现有关。然而,大多数人认为,数学符号“0”的发明应归功于6世纪的印度人。他们先用一个黑点()表示零,后来逐渐变成了“0”。

说到“零”的出现,需要指出的是,“零”字在古代汉字中出现的很早。但当时并不是指“一无所有”,只是指“零碎”和“不多”。如“奇”“零星”“奇”。“105”的意思是:有一个100的分数。随着阿拉伯数字的引入。“105”正好读作“105”,“零”字对应“0”,所以“零”有“0”的意思。

如果你仔细看,你会发现罗马数字里没有“0”。其实在公元5世纪,“0”就传入了罗马。但是教皇既残忍又守旧。他不允许任何人用“0”。一位罗马学者在笔记中记录了一些关于“0”用法的好处和解释,于是被教皇召见,执行了“zɣn”的惩罚,使他不能再握笔写字。

但是没有人能阻止“0”的出现。现在,“0”成了最有意义的数字符号。“0”可以表示“否”或“是”。比如0℃的温度不代表没有温度;“0”是正数和负数之间唯一的中性数;任何数(0除外)的0的幂等于1;0!=1(零的阶乘等于1)。

除了十进制,在数学萌芽的早期,也出现过很多数字十进制,比如五、二进制、三进制、七、八、十进制、十六进制、二十、六进制等等。在长期的实际应用中,十进制终于占了上风。

目前国际上通用的数字1,2,3,4,5,6,7,8,9,0称为阿拉伯数字。事实上,它们最早是由古印度人使用的。后来,阿拉伯人将古希腊的数学融入到自己的数学中,并将这种简单易记的十进制记数法传遍了整个欧洲,逐渐演变成了今天的阿拉伯数字。

数字的概念,数字的书写,十进制的形成,都是人类长期实践活动的结果。

随着生产生活的需要,人们发现仅仅用自然数来表示是远远不够的。如果五个人在分配猎物时分享四样东西,每人应该得到多少?于是分数就产生了。中国学习分数比欧洲早1400多年!自然数、分数和零通常被称为算术数。自然数也称为正整数。

随着社会的发展,人们发现很多量都有相反的含义,如增与减,进与退,升与降,东与西。为了表示这样一个量,产生了一个负数。正整数、负整数和零统称为整数。如果加上一个正分数和一个负分数,统称为有理数。有了这些数字表示,人们觉得计算起来方便多了。

然而,在数字化发展的过程中,一件不愉快的事情发生了。让我们回到2500年前的希腊,那里有一个毕达哥拉斯学派,一个研究数学、科学和哲学的团体。他们认为“数”是万物的本源,支配着整个自然界和人类社会。所以世界上的一切都可以归结为一个数或者数的比,这是世界美好和谐的源泉。当他们说数字时,他们指的是整数。分数的出现让“数”变得不那么完整。但是分数可以写成两个整数的比值,所以他们的信仰没有动摇。但是学校里一个叫希帕索斯的学生,在研究1比2的比例中的中项时,发现没有一个用整数比写的数可以代表它。如果设这个数为x,由于推导的结果是x2=2。他画了一个边长为1的正方形,设对角线为x,根据勾股定理x2=12+12=2,可以看出边长为1的正方形的对角线的长度就是要求的数,这个数一定存在。但是多少钱呢?怎么表达?希帕索斯和其他人感到迷惑不解,最后认定这是一个从未见过的新数字。这个新数的出现震惊了毕达哥拉斯学派,动摇了他们哲学思想的核心。为了保持支撑世界的数学大厦不倒塌,他们规定新数字的发现应该严格保密。而希帕索斯还是忍不住把秘密泄露出去。据说他后来被扔进海里喂鲨鱼。然而,真相是无法隐藏的。人们后来发现了很多不能用两个整数的比值来写的数,比如圆周率,这是最重要的一个。人们把它们写成π,以此类推,称之为无理数。

有理数和无理数统称为实数。实数范围内各种数的研究,使数学理论达到了相当先进和丰富的水平。此时,人类历史已经进入19世纪。很多人认为数学上的成就已经达到顶峰,不会再有数字形式的新发现。但是解方程的时候,往往需要开方。如果平方数是负数,这个问题有什么解决方法吗?如果无解,那么数学运算就像走进了死胡同。于是数学家们规定用符号“I”来表示“-1”的平方根,即I =,虚数就这样诞生了。“我”成了一个虚构的单位。后人把实数和虚数结合起来,写成a+bi的形式(A和B都是实数),是一个复数。长期以来,人们在现实生活中找不到用虚数和复数表示的量,所以虚数总是让人有一种虚幻的感觉。随着科学的发展,虚数已广泛应用于水力学、制图学和航空学。在掌握和使用虚数的科学家眼里,虚数一点也不“虚”。

在数的概念发展到虚数和复数之后,很长一段时间,甚至有数学家认为数的概念已经完美,数学大家庭的成员都已经到了。然而,在1843年6月+16年10月,英国数学家汉密尔顿提出了“四元数”的概念。所谓四元数,就是一种数。它由一个标量(实数)和一个向量(其中x、y和z是实数)组成。四元数广泛应用于数论、群论、量子论和相对论。与此同时,人们也对“多元数”理论进行了研究。多元数已经超出了复数的范畴,人们称之为超复数。

由于科技的发展,向量、张量、矩阵、群、环、域等概念不断产生,将数学研究推向了一个新的高峰。这些概念也应该归入数字计算的范畴,但把它们归入超复数是不合适的。所以人们把复数、超复数称为狭义数,把向量、张量、矩等概念称为广义数。尽管人们对数字的分类仍有一些分歧,但他们一致认为公认数字的概念将继续发展。到现在,有几个家庭已经发展得很大了。