论文题目:复合光学系统基点和基面的确定!
光学仪器中常用的光学系统一般由单透镜或胶合透镜等球面系统的* *轴组成。对于薄透镜组成的球面系统,可以用高斯公式确定物体和图像的位置。
(1)
当然可以,其中f’是系统的像焦距,s’是像距,s是物距,物距是第一主平面到物体的距离,像距是第二主平面到像的距离,系统的像焦距是第二主平面到像的焦点的距离。当从测量起点测量时,每个量的符号是正的,当沿着射线测量时,符号是负的。
而且,物体和图像在* * *轴球系中的位置也可以用牛顿公式表示,即
xx'=ff' ( f=-f') (2)
其中x是从物体焦点测量的从物体焦点到物体的距离,x’是从图像焦点测量的从图像焦点到图像的距离。物焦点f和像焦点f’分别是从第一和第二主表面到物焦点和像焦点的距离。符号同上。
* * *轴球面系统基点、基面具有以下特征:
主要点和主要表面:
如果把物体放在垂直于系统光轴的第一点H,就会形成一个与第二主点H '处物体大小相同的正立像,即主点是一对横向放大倍数=+1的* * *轭点。垂直于光轴的平面分别称为第一和第二主面(图1中的MH,MH’)。
4.节点和节点平面:
节点是一对角度放大倍数=+1的* * *轭点。当入射光(或其延长线)通过第一个节点N时,出射光(或其延长线)必须通过第二个节点N’,并与N的入射光平行(图1)。穿过垂直于光轴的节点的平面分别被称为第一和第二节点平面。
当* * *轴球面系统在同一介质中时,两个主点分别与两个节点重合。
3.焦点和焦平面:
平行于系统主轴的平行光束,经系统折射后的像焦点和主轴焦点F’称为像焦点;垂直于主轴通过F '的平面称为像焦平面。从第二主点H’到像焦平面F’的距离称为系统的像焦距F’。主轴上的一点f经折射形成与主轴平行的平行光束,称为物焦平面,垂直于主轴通过f的平面称为物焦平面。
显然,薄透镜的两个主点与透镜的光心重合,* * *轴球面系统的两个主点的位置会随着各组合透镜或折射面的焦距系统的空间特性而变化。作为例子讨论了两个薄透镜的组合。设两个薄透镜的像焦距分别为f 1’和F2’,两透镜间的距离为d,则透镜组的像焦距f’可由下式求得。
两个主要点的位置:
4.nodal探测器原理:一束平行光入射到由两个薄透镜组成的光学组上,光学组与平行光为* * *轴。光线经过光学组后,会汇聚到白屏上的Q点上(如图二),这就是光学组的像焦F’。这是以垂直于平行光的某一方向为轴,光学组在以下两种情况下可以旋转一个小角度:
A.旋转轴刚好穿过光学组的第二节点N’。
因为入射在第一节点N上的光必须从第二节点N’出射,出射光平行于入射光,所以现在N’没有移动,入射光的方向没有改变。因此,通过光学组的光束仍然会聚到平面上的Q点(如图3(a)所示),但此时光学组的像焦点F’已经离开了Q点。严格来说,旋转后的图像清晰度略差。
B.旋转轴不穿过光学组的第二节点N’。
由于第二个节点N’不在转轴上,光学组转动后,N’移动,但N’发出的光仍与入射光平行,因此N’发出的光与前一种情况相比会发生偏移,光束的会聚点从Q点移动到Q’(如图3(b))。
螺距测量装置是可以绕垂直轴OO’旋转的水平斜槽R。被测基点的光学系统Ls(由薄透镜组成的轴系)可以放在滑槽上,其位置可以调节,滑槽上的刻度表示Ls的位置(如图4)。测量时,轻轻旋转滑槽,观察白屏P '上的图像是否移动,参考申诉分析判断N '是否在OO '中。